
W. F. 

may be looked up under the corresponding entry in 
Table 2.* The order of the coefficients corresponds 
exactly to the order of assignment of independency, 
i.e. in the case of linear relationships the independent 
parameters always enter on the left-hand side of the 
dependent ones. It is worth noting that three of the 
non-centrosymmetric groups have null third-rank 
tensors but one free coefficient as some higher level 
(rank 5 for 422, rank 7 for 622, rank 9 for 432). 

It should also be remembered that, in a least- 
squares refinement of a non-centrosymmetric struc- 
ture, one parameter corresponding to a non-zero entry 
for the point group has to be kept fixed (Hazell & 
Willis, 1978). 

The author is grateful to R. Brendel for com- 
municating parts of his programs. Part of the work 

* The tables containing the symmetry restrictions of the seventh- 
and eighth-rank tensors have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38913 ( l l  pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CHI 2HU, England. 
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was done at the Max-Planck Institut f'fir Festk~Srper- 
forschung in Stuttgart and at the Kristallographisches 
Institut in Freiburg. 
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Abstract 

An iterative procedure for the determination of the 
signs of scattering amplitudes is considered. It is 
assumed that the scattering density is a one- 
dimensional antisymmetric function with a limited 
range of definition. The convergence of the method 
to a rigorous solution is proved. The stability of the 
procedure with respect to various experimental errors 
is shown in model examples. The proof can be gen- 
eralized for a one-dimensional phase determination 
of a continuous intensity distribution. 

Introduction 

When non-crystalline objects are investigated by 
diffraction methods, the intensity of coherent 
scattering I(s) can often be measured as a continuous 

0108-7673/84/020137-06501.50 

function of scattering vector s (for instance, intensity 
distribution along layer lines for one-dimensionally 
periodic structures, intensity of small-angle scatter- 
ing). The restoration of the scattering density distribu- 
tion frequently requires the solution of the phase 
problem. The latter is analogous to the phase problem 
in crystal-structure analysis and lies in finding the 
phases of scattering amplitudes A(s) when their 
moduli are known from the experimental intensities. 
In the present paper the case will be considered when 
the scattering density is a one-dimensional anti- 
symmetric function, so that its connection with the 
scattering amplitude is given by the sine-Fourier 
transform 

oo 
A(s)= ~s[p(r)] = ~ p(r)sinsr dr (1) 

o 

and A(s) is a real function. 

O 1984 International Union of Crystallography 
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Then the density distribution function p(r) can be 
determined by the reverse transform 

p( r )=  ~ [ +[A(s)l]sinsr ds (2) 
0 

(the constants before the integrals are omitted for the 
sake of simplicity). The moduli of amplitudes [A(s)[ = 
[I(s)] '/2, and the problem consists of the determina- 
tion of the true signs of the function A(s). Such a 
problem must be solved, for example, in small-angle 
scattering when determining the radial density distri- 
bution of spherically symmetric particles (Guinier & 
Fournet, 1955). It should be noted, however, that the 
results presented below can t~e generalized for the 
case of a complex function A(s). 

The possibility of finding the true signs of function 
A(s) is based on the fact that p(r) has a finite range 
of definition [i.e. such a value R exists that p(r)= 0 
when r >  R, and, therefore, R is the upper limit of 
integration in (1)]. This condition is fulfilled in prac- 
tice, since the dimensions of any object under investi- 
gation are finite. Hosemann & Bagchi (1962) showed 
that the task of restoring the function p(r) knowing 
I(s) and R has a unique solution (except for a factor 
+1). 

However, a valid method for sign determination 
has not yet been proposed. Many authors solved this 
problem by sorting out the signs of the maxima of 
]A(s)l or simply by assigning A(s) alternative signs 
to successive maxima of [A(s)[ (see, for example, 
Fischbach & Anderegg, 1965; Mateu, Tardieu, Luz- 
zati, Aggerbeck & Scanu, 1972). The "pattern recogni- 
tion' technique (Luzzati, Tardieu & Taupin, 1972) 
sorts out all the possible combinations of signs [for 
a discrete function l(s)]. The automatic determina- 
tion of the signs using explicitly the finiteness of the 
range of definition of p(r) is performed in the iterative 
procedures (the so-called 'box-function refinement', 
see Makowski, 1981). Crowther (1967, 1969) has 
developed a general theory of such methods for non- 
crystallographic symmetry. These methods are simple 
in use and ensure reliable results. However, their 
convergence has not been shown rigorously else- 
where. 

It is also possible in principle to restore function 
p(r) without solving the sign problem, using the fact 
that the Fourier image of scattering intensity in the 
general case represents the so-called self-convolution 
of density distribution (Hosemann & Bagchi, 1962). 
To solve the one-dimensional integral equation of 
self-convolution using the finiteness of p(r) a number 
of techniques were proposed (e.g. Pape, 1974; Brada- 
czek & Luger, 1978). These techniques, however, show 
a numerical instability. A method stable with respect 
to experimental errors was developed by Glatter 
(1981). Unfortunately, this method is complicated and 
represents the solution only as a superposition of step 
functions. 

In this paper a simple method for restoring the true 
signs of scattering amplitude (l) is considered and 
rigorously substantiated. 

The method of sign determination 

The method considered below is a particular case of 
the general technique developed by Svergun, Feigin 
& Schedrin (1982) for the interpretation of small-angle 
scattering data. It is based on the finiteness of p(r) 
and is analogous to the 'box-function refinement' 
technique (Makowski, 1981). The algorithm of the 
method consists of the iterative procedure 

'4k(S) = sign [ Ak( s)] [A(s)l (3) 

Pk +l(r)= ik(r)II(r- R). (4) 

Here k is the iteration number, functions Ak(s ) and 
pk(r), ,4k(S) and ilk(r) are connected by transform (1) 
and the step function 

1, r<-R 
H(r -  R)= O, r > R. (5) 

The convergence of the process can be tested by R 
factors of discrepancy in reciprocal and real space: 

<30 

R, =~[I(s)-A~(s)] 2 ds/~ 12(s)ds (6) 
0 0 

R R 

Rp = ~ [pk+,(r)--pk(r)] 2 dr/~ p2(r) dr. (7) 
0 0 

To substantiate the validity of process (3)-(4) the 
following reasoning is often given: if the set of signs 
determined by Ak(s) is wrong, ilk(r) is infinite, so 
transform (4) results in the change of this set. Since 
the true set of signs corresponds to function p(r) 
having the finite support, the signs of Ak÷,(s) should 
be more appropriate, etc. Indeed, the model calcula- 
tions show that the process converges uniformly over 
the factors R! and Rp. The set of signs is restored, as 
a rule, almost completely and then the signs no longer 
change. It is obvious, however, that neither the above 
arguments nor model calculations can offer a rigorous 
proof of the convergence of the processes analogous 
to (3)-(4) to the true solution. Meanwhile a reliable 
proof of this fact would be quite important since such 
methods are easily applicable and are widely used in 
structure analysis. 

The convergence of the method 

First of all let us derive the explicit relation between 
the functions Ak(S) and Ak.,(s). The 'sign' function 
can be defined as 

Ak(S)/IAk(S)I i fAk(s)#  0 
sign [Ak(S)] = [0  if Ak(S) = 0. (8) 

Expressing ~k(r) from ,4k(S) according to (2), one can 
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substitute it in (4) and take the sine-Fourier transform 
from both parts of the obtained equation. When mak- 
ing this it is appropriate to use the folding theorem 
for the sine-Fourier transforms (Sneddon, 1951): if 
F~(s) and Go(s) are the sine- and cosine-Fourier 
transforms o f f ( r )  and g(r), correspondingly F~(s)= 
~s[f(r)] ,  Go(s) = ~c[g(r)], then 

~[f(r)g(r)]= F~(s)*Gc(s) 

=½ ~ F~(u)[G~([u-sl)-Gc(u +s)]  du. 
0 

Thus, one obtains 

Ak+l(S)=[,4k(S)]*~c[II(r-- R)] 
oo 

= ½ ~ [Ak(u)/lAk(u)l]lA(u)ll-L(R, s, u) du, 
o 

(9) 

(10) 
where 

Hs(R, s, u) = sin g ( s -  u) / (s-  u) 

- s i n  R(s+u)/(s+u). (11) 

Equations (10) and (11) provide an explicit connec- 
tion between the two successive iterations. Futher- 
more, applying (9) to the trivial equation 

p k  + l ( r )  = Pk + l ( r ) [ I ( r  --  R), (12) 

one obtains 

Ak+,(S)=½ ~ Ak+,(u)H,(R, s, u) du. (13) 
0 

It is obvious that all the functions which show the 
sine-Fourier image equal to zero beyond the finite 
interval 0 < - r_< R will obey (13). 

Subtracting (13) from (10) one gets 

~p(s) = 0 = ½ ~ {[Ak(U)/IAk(U)[] 
0 

xlA(u)l-Ak+~(u)}IL(R,s,u)du. (14) 

It is clear that for any function a(s) 

a(s)~(s) ds =0.  (15) 
0 

In particular it is valid for a(s)= Ak(S): 
CO O0 

½ ~ Ak(S) ~ {[Ak(u)/lA~(u)[] 
o o 

xIA(u)I-Ak+i(u)}II~(R, s, u) du d s = 0 .  (16) 

Since the integrals in (16) converge it is possible to 
change the order of integration: 

oo 

f {[Ak(u)/IAk(u)l]lA(u)l- Ak+,(u)} 
o 

Function Hs(R, s, u) is symmetrical with respect to s 
and u, so the inner integral in (17) is simply Ak(U) 
[taking (13) into account]. Thus, 

o r  

oo 

Ak(u){[Ak(u)/IAk(u)l]lA(u)[- Ak +,(u)} du = 0 
o 

(18) 

oo 

IAk(u)A(u)l du = J Ak(U)Ak+,(u) du. (19) 
o o 

Rewriting (10) and (13) for Ak(S ) and making the 
calculations as in (14)--(19) one obtains 

oo oo 

AE(u) du = ~ Ak(u)lA(u)l[Ak_,(u)/lAk-,(u)[] du. 
0 0 

(20) 

Since, for any integrable function a(s),  

j" a(s)  ds_< la (s ) lds ,  (21) 
0 0 

one has from (20) 

A2k(U) du <- ~ IAk(u)A(u)l du. (22) 
o o 

Using (19) one gets 
OO OO 

A2k(U) du <- ~ Ak(U)Ak+,(u) du. (23) 
o o 

According to the Cauchy-Schwartz inequality (Korn 
& Korn, 1968), one can write 

I ~ A k ( U ) A k + ' ( u ) d u [ o  

<- A2(u) du I A2+,(u) du . (24) 
0 

Since both parts in (23) are positive, then, using (24), 
one finally arrives at 

~A~(s) ds<-~A~+,(s)ds. (25) 
0 0 

The integrals in (25) represent simply a squared 
norm of solution - according to the Parseval theorem 
(Korn & Korn, 1968) one has 

R 

IIp,,+,ll ~= .1 p~,+,(r)dr 
o 

= ~ A2k+~(s) ds = IIAk+,l l  2. (26) 
0 

Furthermore, it is clear [for instance from (22)] that 
at any step of the iterative procedure 

IlAkll 2 _< 113112. (27) 
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Thus the sequence of the norms IIAkll ~ is monotonic, 
according to (25), and restricted according to (27). As 
known from the mathematical analysis such a 
sequence has a limit (Korn & Korn, 1968). Besides, 
it is easy to show that ifllmkll ~ --IIAk+,ll ~ these functions 
are identical. Indeed, let us consider 

oo 

[Ak(S)-- Ak +l(S)] 2 ds 
0 

= 211Ak112-2 ~Ak(S)Ak+~(s)ds~O. (28) 
0 

Comparing (25) and (28), one can infer that only the 
equality sign can occur in (28), i.e. Ak(S) coincides 
with Ak +l(S ) everywhere. 

So we have proved that process (3)-(4) always 
converges to some solution. Now let us consider this 
solution as such. 

The uniqueness of the solution 

First of all it will be shown that the process will not 
stop until the norm of the solution reaches the value 
of IIAII z. Let us suppose that the process stops at the 
kth step, i.e. the conditions 

sign[Ak_,(S)]~sign[Ak(S)] (29) 

Ak(S) = Ak+i(S) (30) 

are fulfilled. Then it is possible to write 
c o  

Ak(S)=½ ~ [Ak-,(u)/IAk-t(u)l] 
0 

x l A ( u ) l l L ( R , s , u ) d u  (31) 

Ak +l(s) = Ak(S) 
oo 

= ~ ~ [Ak(u)/IAk(u)[] 
0 

xlA(u)l lTs(R,s ,u)du.  (32) 

Subtracting (31) from (32) and performing the 
calculations as in (14)-(19) one obtains 

6 o  

IAk(u)A(u)l du 
0 

= ~ IA(u)lAk(u)[Ak-~(u)llAk-~(u)l] du. 
0 

(33) 

Since (29) takes place, i.e. the signs of Ak_~(s) and 
Ak(S) c a n n o t  fully coincide, then, applying (21) for 
estimation of the right side of (33), it is necessary to 
choose the 'greater than' sign. So one arrives at 

OO c o  

IAk(u)A(u)[ du < ~ [Ak(u)A(u)l du. (34) 
0 0 

This contradiction proves that if the signs change at 

the ( k -  1)th iteration they should change at the kth 
iteration, too. Clearly it is equivalent to the fact tha t  
the sequence of norms is rigorously increasing. 

Let us now suppose that the process converges to 
some solution A,(s) with the norm IIA, II2<IIAII 2. It is 
obvious that, if one continues the process with any 
function A~(s) as the initial approximation which 
differs from A~(s) as little as possible and shows the 
same (or greater) value of the norm, the latter would 
increase again, so the process will not return to A~ (s). 
It means that such a solution, if it exists, is unstable. 
Therefore, the inclusion of such perturbations in the 
procedure when the norm of the obtained solution is 
less than the actual value IIAII 2 (it is, however, only a 
formal requirement, since to get an unstable solution 
is improbable in practice) ensures that the process 
will converge to the final solution with the maximal 
value of the norm, namely IIAII 2. 

Thus the squared norm of the resulting solution - 
function As(s) - is equal to IIA[I 2. It is obvious from 
(22) that the only case obeying this condition is the 
case 

IAs(s)l--IA(s)l for all s. (35) 

So the solution density distribution p~(r) given by 
process (3)-(4) has the same support as p(r) and the 
same moduli of the sine-Fourier image. Let us con- 
sider the difference function 

Ap(r) = p ( r ) -  ps(r). (36) 

Its Fourier image will be 

0 if A(s)As(s) >- 0 
AA(s)= 2A(s) i fA(s )As(s )<0 .  (37) 

So, if the intervals existed where the signs of A(s) 
and As(s) were opposite [except for the case A(s)= 
-As(s )  and, correspondingly, p ( r ) = - p s ( r )  every- 
where] then AA(s) would be a non-zero function 
equal to zero within some finite intervals. This is 
impossible for a function having the Fourier image 
with a finite support (such a function should be ana- 
lytical, see Hosemann & Bagchi, 1962). Thus AA(s) 
should be either zero or 2A(s) everywhere, so we 
obtain finally 

ps(r) = + p(r). (38) 

Consequently, it has been proved that the iterative 
procedure (3)-(4) converges to the true solution up 
to a sign. It is worth noting that the result is not 
affected by the initial approximation (the only 
requirement is that the signs should change at the 
first iteration). 

The stability of the method 

The above proof, of course, deals with an ideal theor- 
etical c a s e - a l l  the input parameters [function l(s),  
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the value R] are assumed to be exactly defined. In 
practice they are known, as a rule, with some errors. 
So for practical use of the method in question its 
stability with respect to the experimental errors 
should be examined. An appropriate approach to the 
investigation of the stability consists of making model 
calculations inserting different errors in the input 
parameters. 

The stability of the analogous algorithm was shown 
with a number of various model examples by Svergun, 
Feigin & Schedrin (1983). Here we shall present some 
examples to illustrate the stability of the procedure 
with respect to basic experimental errors. 

The model calculations were carried out as follows. 
For a given function p(r) the intensity curve l(s) was 
calculated within some interval 0 <- s - s . . . .  then the 
restoration of p(r) using procedure (3)-(4) was done 
for a fixed value of R. As the initial approximation 
the signs of the function cos sR were chosen (it can 
be readily shown that they are the signs of the main 
asymptotic trend of the functions obeying (13) when 
s tends to infinity). The process stopped when the Rp 
factor became less than some accuracy e (for our 
calculations e was chosen equal to  10-3). 

The example showing the restoration of p(r) upon 
all the parameters exactly defined is given in Fig. 1 
[the value of Sma x w a s  0 " 5 ,  i.e. SmaxR w a s  equal to 50, 
making the termination effects in (2) negligibly small]. 
The process converges quite fast (it took only three 
iterations to get the desired accuracy) and the restored 
function (curve 2) coincides with the true one (curve 
1) almost completely. Values 

~,, --IIp,,ll =/llpll = ( 39 ) 

and Rt are given in Fig. 2 as functions of the iteration 
number k. 

The errors in practice can appear due to the follow- 

ing factors: (1) the uncertainty of the R value; (2) 
statistical noise in I(s) ;  (3) the termination of l(s) 
for s > Sma x. Besides, a question arises whether the 
solution remains independent of the initial approxi- 
mation under the erroneous input data. Our calcula- 
tions demonstrate the stability of the procedure with 
respect to all these factors. In particular it should be 
noted that the increase of R would not alter the result 
(for R ' > R  all the above formulae hold, so the 
increase of R can only lead to an increase of the 
number of iterations in order to achieve the same 
accuracy e). Meanwhile the decrease of R should 
worsen the R~ factor of the resulting solution (see 
Svergun, Feigin & Schedrin, 1983). Thus, such a 
method can be applied for refinement of the value of 
R when it is approximately known. 

Figs. 1 and 2 show the application of the method 
when the distortions are inserted into all the input 
parameters simultaneously: the value of R ' =  0.9 R, 
l(s) contains the normally distributed statistical noise 
with the standard deviation o-= 20%, the value of 
S m a x = 0 " 2 ,  i.e. S m a x R ' =  18 (quite a realistic case for 
an experiment). The initial approximation was also 
changed (the signs of the function cos 2.5 sR were 
taken). Nevertheless it is evident that no significant 
changes occur besides the increase of the number of 
iterations required. Analogous results were obtained 
for a number of other model functions. Fig. 3 gives 
an example of application of the procedure for the 
restoration of the function p(r) containing discon- 
tinuities (namely multistep function). This is the most 
unfavourable case because the termination effects in 
(2) become quite significant. However, as one can see 
from Fig. 3, the restoration remains satisfactory (to 
reduce the termination effects we used the filter 
described by Rolbin, Svergun, Feigin & Schedrin, 
1980). 

-1  

0 

r 

3 / ~xc.jj 

Fig. 1. The restoration of the model density distribution. (1) Func- 
tion p(r), R = 100; (2) function ps(r), Smax =0"5; (3) ps(r) when 
inserting the errors into all input parameters. 
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Fig. 2. The norm of the solution and Rz factor as functions of the 
iteration number. (1) The restoration by the exact data; (2) the 
restoration in the presence of errors. Solid line/Zk, dashed line R t. 
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-1  

0 

2/ 
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t l  

lOO 

Fig. 3. The restoration of multistep distribution. (1) p(r), R = 100; 
(2) p~(r), Smax=0"5. The result of the 5th iteration is given, 
/z =0.76, R I =0.187. 

Conclusions 

The method presented can be applied for determina- 
tions of signs of scattering amplitudes in the analysis 
of various non-crystalline objects. In particular it is 
possible to use the method in small-angle scattering 
for the restoration of the structure of the particles 
which can be described by a one-dimensional func- 
tion [spherically symmetrical, rod-like (Fedorov, 
1971); flattened (Lesslauer, Cain & Blasie, 1972)]. 

The above proof can be used also for the general 
case of one-dimensional Fourier transform 

R 2 

A(s)= ~ p(r)exp(isr)dr. (40) 
Rj 

In this case (3) and (8) provide the phases of ,4k(S) 
and the function 

1, Rl<-r<-R2 (41) 
/-/(r, RI, R2)= 0, r < R i ,  r > R 2  

should be substituted into (4) instead of II(r-R). 
The convergence of such a procedure can be proved 
with arguments similar to these considered above. 
The difference will lie in the fact that the coincidence 
of the moduli (35) does not ensure thee uniqueness of 
the solution. The number of possible solutions in this 
case will depend on the number of complex zeros of 
the analytical continuation of function A(s) (Walther, 
1962). The iterative procedure will converge to one 
of these solutions depending on the initial approxi- 
mation. 
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